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Abstract:

Wave propagation in disordered (random) media is the underlying theme. We study the effective
behaviour of long coastal waves that travel over rough topographies. The topographies analyzed con-
tain a smooth slowly varying profile together with disordered small-scale features. The mathematical
model is a Conservation Law with random coefficients. The main (stochastic theory) asymptotic
result is that the medium fluctuations cause the propagating pulse to broaden as it travels. The so
called apparent diffusion (or pulse shaping) depends only on the traveling distance and the statis-
tics of the random medium fluctuations. Thus, the broadening can be described in a deterministic
way independently of the particular medium realization. This is confirmed numerically. Numerical
experiments also show that the theory describing pulse shaping is very robust. Nonlinear shallow
water simulations show that small amplitude pulse shaping is not affected by higher order terms.
The robustness of the theory is observed numerically for a wide parameter regime. We vary both the
microscale fluctuation level as well as the horizontal length scales of the topography. The numerical
experiments produce very good results regarding the prediction for the wavefront attenuation.

I. INTRODUCTION

Wave—topography interaction has been the subject of considerable mathematical research. The physical applications
range from coastal surface waves [13] to atmospheric flows over mountain ranges [2,8]. In particular, the interaction
of waves with fine features of the topography is of great interest. As pointed out in the introduction to the Orography
proceedings [8] of the European Centre for Medium-Range Weather Forecasts (ECMWF), the “representation (...)
of subgrid-scale orographic processes is recognized as crucial to numerical weather prediction at all time ranges”.
In the atmospheric literature orography implies mountain ranges [2]. Our study is therefore focused on the effect
of small-scale topographic features, which we call the microstructure. A mathematical theory is described and its
robustness validated numerically.

In this paper we study the interaction due to long coastal waves traveling over a rough topography. In the future we
intend to extend this study to models including the effect of rotation. As surface gravity waves propagate from deep
to shallow waters, they are transformed due to shoaling, refraction, diffraction and reflection. To concentrate on the
main scattering mechanism connected with the pulse shaping phenomenon described below, we consider the normal
incidence of surface pulse shaped waves. These waves propagate over topographies containing a smooth slowly varying
profile together with disordered (random) small-scale features. In other words, a pulse propagates in a medium whose
parameters vary randomly. The mathematical model is a Conservation Law with random coefficients.

The main result is that the random medium fluctuations cause the propagating pulse to broaden as it travels.
Due to multiple scattered energy, the pulse appears to diffuse about a moving center. The amount of broadening
is proportional to the square root of the traveling distance. Moreover, the apparent diffusion depends only on the
traveling distance and the statistics of the random medium fluctuations. Thus, the broadening can be described in a
deterministic way independently of the particular medium realization. This important observation will be confirmed
numerically. However the wvelocity of the wave pulse contains a small random component. In the sequel we refer to
the transformation of the pulse, due to the microscale medium fluctuations, as pulse shaping. It is worth noticing
that effective medium theory is valid for short propagation distances on the scale of the wavelength. In the effective



medium regime (i.e. homogenization theory) there is no pulse shaping. In the regime that we consider, with relatively
long propagation distances, the microstructure affects the pulse shape, moreover, the traveltime includes a small
random component.

Through numerical experiments we show that the theory that describes the pulse shaping is very robust. Nonlinear
shallow water simulations show that small amplitude pulse shaping is not affected by higher order terms. We show
the robustness of the theory in a wide parameter regime, by varying both the microscale fluctuation level as well as
the horizontal length scales. This is important for the theory to be useful in a range of applications.

The theory for pulse shaping was originally derived in the context of acoustic wave propagation in the earth’s crust
[18]. For such a medium one of the authors has analyzed the spreading of an acoustic pulse due to the microscale
variations in the medium parameters (Papanicolaou & Sglna [19]; Sglna [20]). The motivation for modeling in terms
of a random medium is that a detailed description of microscale medium fluctuations are often not known. Using a
stochastic model uncertainties about a specific medium are translated into uncertainties about a transmitted pulse
shape in a systematic way [1,4,5,9-12]. Moreover, typical pulse shaping can be examined and characterized. As
mentioned above the broadening of the pulse traveling through the random medium can actually be described in
a deterministic way, to leading order, assuming that the statistics of the random variations are known. Stochastic
modeling has been used for long, weakly dispersive surface wave problems by Nachbin [14] and Nachbin & Papanicolaou
[17]. It was also considered by Devillard et al. [7] and verified experimentally in a wavetank by Belzons et al. [3].

In section IT we present the nonlinear shallow water model for which the numerical method we use was formulated
[6]. We also introduce its linear approximation for which the pulse shaping theory is derived. In section IIT and IV the
pulse shaping theory is described and it is validated numerically in section V. We demonstrate an excellent agreement
between theory and numerical experiments in a wide parameter regime.

II. THE SHALLOW WATER MODEL

We consider gravity driven surface waves propagating in shallow channels. The regime of interest is such that
the fluid is considered to be inviscid and incompressible. In particular, potential theory can be used to describe the
interaction of long waves with rapidly varying features of the bottom topography [13,22].

Regarding wave—topography interaction the following characteristic length scales [22] are important in studying
different regimes of propagation: the typical depth is given by hg, the typical wavelength by A\ and the typical
amplitude of the free surface elevation n(x,t) by a. We also have the horizontal length scale I, for the bottom
irregularities, as well as L representing the total length of the rough region (c.f. Figure 1). The importance of these
scales becomes clear when we look at the dimensionless potential theory equations. The velocity potential ¢(z, 2, t)
satisfies the dimensionless equations [22]:

B ¢put ¢.. = 0 for —h(z/y) <z <an(et),

with the nonlinear free surface conditions
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at z = an(z,t). The Neumann condition at the impermeable bottom is
B _
The bottom topography is described by z = —h(z/v). The different regimes are controlled by the dimensionless

parameters a = a/h,, which controls the strength of nonlinearity, 8 = h2/A?, which controls dispersion and v = I/
which controls how rapidly the bottom irregularities vary. The acceleration due to gravity is denoted by g and
the reference shallow water speed is ¢g = (gho)/?. Different regimes of interest can be identified through these
dimensionless parameters [22]. Using this model Nachbin & Papanicolaou [14,17] studied the reflection/transmission
problem for linear (a = 0), weakly dispersive (8 < 1) surface pulse shaped waves propagating over topographies
having only disordered small-scale features (y < 1).

In the present work we are interested in studying long wave interaction with topographies having two components:
a smooth slowly varying background superimposed with rapidly varying features which we call the microstructure.



In the small amplitude regime (0 < a < 1) we show numerically that nonlinearity is in fact a higher order effect.
The pulse shaping theory is robust and, for example, long waves (0 < 8 < 1) will not break while interacting with
the topography. We also point out that using potential theory and stochastic modeling, Nachbin & Papanicolaou
[17,14] showed that in the presence of rapidly varying topographies, the statistics for the reflection and transmission
coeflicients of long waves are effectively the same as for the corresponding shallow water model (c.f. section 7 [17]).
Namely the infinitesimal generator for the reflection process is the same for these two models.

In the present work we study transmitted waves and pulse shaping through a nonlinear shallow water model.
As pointed out in Nachbin & Papanicolaou [17,14] its linear approximation captures the essential physical properties
regarding reflection/transmission of long surface waves over disordered topographies. The presence of nonlinear terms,
in the shallow water equations, permits the study of the robustness of the asymptotic theory. Moreover, Casulli &
Cheng [6] developed a very efficient 3D nonlinear shallow water solver, that was kindly made available to us.

Casulli & Cheng [6] considered the following nonlinear shallow water model in order to formulate their numerical
scheme. Let the horizontal z and y velocity components be given by u(z,y,z,t), v(z,y,2,t) and the z—vertical
component by w(z,y, 2,t). Time is denoted by ¢. The system of partial differential equations for the free surface
problem is given by

Ut + Uly + VUy + WU, = —gN)y (1)

Ut + UV, + VVy + WU, = —giy (2)

m-}-[/_ﬂhudz]z-i-[/_lvdz] =0. 3)

Yy

The vertical velocity component w is calculated from the conservation of mass equation. Further conditions were
incorporated, such as viscous terms, the tangential boundary stress along the free surface and along the sediment—
water interface [6]. We omit these terms and conditions since they are not going to be taken into account in our
analysis and experiments. A further simplification takes place when a vertical average is taken over the water body.
The model reduces to the shallow water equations

Ui +UU, +VUy = —gna (4)
Vi+ UV, +VV, = —gn, (5)
m +[HU], +[HV], =0, (6)
where the vertical averages are defined by
1 /" 1 [ .
U(:v,y,t)—ﬁ/_hudz, V(m,y,t)—ﬁ/_hvdz (7)

and H(z,y,t) = n(z,y,t) + h(z,y). In the numerical method adopted for our simulations this approximation is
performed over each vertical layer of a three-dimensional grid (Casulli & Cheng [6]).
In Whitham [22] the scaling is such that the dimensionless potential ¢ is given by
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In the dimensionless potential theory equations given above the tilda were dropped. Using the reference potential
gla/c, the horizontal velocities are scaled accordingly, along with the other variables:

F=x/\ §=y/\ t=t/T, T =\co and 7j =n/a.
Note that ga/c, has dimensions of velocity ([length]/[time]). Let this be the characteristic horizontal speed and define
U="U/(gajc,) and V =V/(ga/c,).

We get the dimensionless nonlinear shallow water system



0{ + 01[705; + a‘?ﬁg = —1jz
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7+ [A0) +[AV] =0,
where the body of fluid is described by
H(%,§,1) = «ii(#,§,%) + h(F/7,9)-
The topography scaling was done in the z-direction, for which we will present the pulse shaping theory.

The pulse-shaping theory to be presented is derived for the one-dimensional, linear approximation of the shallow
water system given above. Namely by taking the a = 0 regime, and going back to the original variables, we have

Ui +gn. =0, (8)

ne + [AU], = 0. 9)

The mountains’ microstructure is contained in the disordered, rapidly varying component of the coefficient h(x). The
microstructure will be modeled by piecewise constant ridges of random heights. References for the interaction of long
linear waves with a stepped ridge (or trench) can be found in chapter 4 of Mei’s book [13]. Alternatively the linear
shallow water system can be written as

U + (gh) 9, =0 (10)

where the flux function, per unit width, is given by ¥(z,t) = h(z) - U(z,t). The local wave speed is ¢(z) = \/gh(z).

In the next section the pulse shaping theory will be described for the linear wave system presented above. We show
in Section V by numerical simulations that this theory is very robust. There we carry out nonlinear shallow water
simulations and show that small amplitude pulse shaping is not destroyed by higher order terms.

III. PULSE SHAPING IN LINEAR CASE

In this section we discuss the solution of the wave system (10-11) when the wave speed, ¢(z) = y/gh(z), fluctuates
randomly corresponding to the water depth h being a random function. The fluctuations in the water depth entail
that the water wave changes its shape as it travels. The system (10-11) is analogous to the model for the propagation
of acoustic waves in a medium with variable density. It is well known how a travelling acoustic pulse is affected by
rapid random variations in the local speed of sound. We here summarize how this interaction can be described for a
particular model of the wave speed fluctuations. In the next section we present a brief argument that derives these
results for how the flux function ¥ interacts with the randomness in the water depth. Then, in Section V we verify
numerically that this description indeed captures very well the pulse shaping for the nonlinear shallow water model
described in the previous section.

We model the wave speed as follows:

(z) = gh(z) = c3(0) for z <0 (12)
(2) = (2)/(1 + op(s/e)) else (13)

where ¢ = ¢o(0). The microstructure in the medium is modelled by the random function p which is a mean zero,
stationary stochastic process. We have introduced the small parameter € that distinguishes phenomena occuring on
different scales. The random fluctuations in the wave speed takes place on the fast spatial scale z/e and we assume
that the microstructure is small, o = O(y/€), in magnitude. The deterministic function co(z) models the smooth
background variations, corresponding to ‘mountain’ structures in the water depth. Note that in practice we do not
know the details of the medium variations, the u. However, if we know the statistics of the medium fluctuations we
shall be able to describe the main or accumulated effect they have on the propagating pulse.

c2
c2



We consider a wave pulse that comes from the left homogeneous halfspace and is impinging upon the random
medium. We want to describe it at some location z. Let the pulse be centered at z = 0 at the initial time ¢ = 0 (see
Figure 2). Consider first the deterministic case with ¢(z) = ¢o(z). The pulse arrives at location z at time T'(z) with
pulse shape f:

n(@,T(z) +s) = f(s/e), (14)
T(x) :/ co (s)ds. (15)
0

Note that we let the pulse be supported on the scale corresponding to the scale of variation of the medium fluctuations.
How can we describe the pulse in the random case when u # 0 7 Observe first that in this case the arrival time at
location z becomes random. We will observe the pulse at the random time:

[ lousla),
) = /0 el s (16)

The modification in the pulse shape due to the random medium fluctuations is to leading order deterministic [19]. The
pulse shaping or modification in the pulse shape can be described via a convolution with the pulse shaping function
H:

U(z,7(z) +5) = /f(s/e — w)Hy (u)du = [f x Ha](s/€), an
with
Halu) = o / o) g
. _ Joo a(s)ers ool ds
How) == 4ct(z) )

s) = ZBu(0)u(s)],

where E denotes expectation. This result corresponds to (34) in the next section. The derivation of these results can
be found in Section 2.1 of [19]. We see that the change in the transmitted pulse shape depends only on the statistics
of the medium fluctuations. The description (17) can be simplified in two ways.

First, it follows from the central limit theorem that in distribution

@) ~T(@) + o /0 ’ ﬁ(s)p(s/e)ds — T(a) + ¢ N(2) (18)

where N (z) is a centered Gaussian random variable with variance:

V(z) = ‘;—6 /0 ’ c52(s)ds /0 " (s)ds (19)

and T'(z) is the effective medium (or average) travel time to location z. Effective medium theory is valid for short
propagation distances on the scale of the wavelength, the scale O(e), and it corresponds here to replacing the random
speed by the effective medium speed. In this effective medium regime there is no pulse shaping. In the regime that
we consider, with relatively long O(1) propagation distances, the microstructure affects the pulse shape. Moreover,
the traveltime includes a small random component. From 19 we see that in the regime e = O(0?) this effect is strong
and must be accounted for.

Second, if the pulse profile f varies relatively slowly on the microscale, on the scale €, then the pulse shaping
function H,(-) can be approximated by a Gaussian kernel with variance (second central moment) V(z):

~y L —w/@V(@)

Ha(u) \/me . (20)
The effect of the random medium fluctuations is that, when we observe the pulse in the frame defined by the travel
time of the random medium, we see a deterministic smearing or spreading of the pulse. For a smooth pulse this
spreading can be described as a convolution with a Gaussian kernel. Therefore, the pulse shaping appears as a
diffusion in the transmitted pulse shape. In the next section we present a formal calculation that leads to the above
pulse shaping picture. Then in the Section IIT we illustrate the pulse shaping numerically using a piecewise discrete
medium with the medium fluctuation being independent in each discrete section. We give explicitly the modification
in the shape of the transmitted pulse associated with the discrete case in Appendix A.



IV. DISCUSSION OF THE STOCHASTIC WAVE EQUATIONS

We present a formal derivation of the pulse shaping approximation discussed in the previous section. Consider
again the wave system (10-11) The flux function solves the scalar wave equation:

U,p —c(x)™2 Uy =0, (21)
where the local wave speed is ¢(z) = v/gh(x). We model the medium fluctuations by
c(z) = ¢ for <0
() = ¢g (L +Vep(z/e))  else.

For simplicity we take here the background velocity to be constant equal to ¢o. The medium fluctuations are modeled
by the mean zero, stationay stochastic process pu. The fluctuations takes place on the microscale, the scale €, and are
small O(y/€) in magnitude. The medium fluctuations decorrelate rapidly and has a finite correlation length I:

| = /0 " Bu(0)u(s)]ds < oo

A. The effective medium

We shall assume that a source wave is coming from the halfspace homogeneous z < 0 and is impinging upon the
heterogeneous halfspace x > 0. In the homogeneous halfspace we can decompose the wave into right and a left

propagating wave components:
t— t
W(o,t) = a (ﬂ) b (M) _ (22)
€ €

Observe that we let the wave functions be supported on the microscale, the scale € on which the medium fluctuates.
The incoming source wave is given by a and b is the reflected wave. We denote the shape of the incoming source wave

by f:
.()-1()

and assume that f is compactly supported. If the wave travels a distance into the random medium that is on the
order of its support then it is not affected by the randomness to leading order. In this case we can replace the random
medium by an averaged or effective medium defined by the constant wave velocity co. That is, we replace ¢(z)~2 in
(21) by ¢, 2, see for instance [1]. However, we shall consider propagation distances of O(1). In this case the effects of
the randomness builds up and the wave pulse becomes strongly effected by the random fluctuations. In the previous
section we described the effects of this interaction and we next give a heuristic derivation that explain the result
detailed above.

B. Transformation into right and left traveling waves
We define the Fourier transform, scaled relative to the microscale, by:

U(z,w) = /ei“s/s‘ll(x,s)ﬁ. (24)

€

From (22) it follows that we can write for z < 0

U = aeiwz/sco + Be—iwz/sco

with



6= a(w) = / eta(t)dt
b= b(w) = / b1 dt.
For z € R me make thus the ansatz
U(z,w) = afz,w)e /=0 + b(z, w)e™ /=0 (25)
0 = d (2, w)e™™/=0 + by (2, w)e ™2/, (26)

which corresponds to a decomposition into locally right (&) and left (b) going wave components when we center with
respect to the effective medium frame of reference.

C. Stochastic couping equations

We substitute (25) in (21) and make use of (26) to find the following stochastic coupling equations

da Wi o

- _ ~ b —iw2z /eco 9
dm 20(]\/%[0‘_*_ € ] ( 7)
db —iw ., 22 /eco

> _ zw z/ec b

dx 200\/_[ + ]

In the deterministic medium with g = 0 there is no coupling between the wave components. The random medium
modulation g introduce a coupling between the wave components which is described by the off-diagonal terms in (27).
The diagonal terms in (27) give a random correction to the local speed of propagation. To compensate for this we
make the following change of variables

a(z,w) = a(z,w)e ™ Jo mds/(Vezeo)
B4z, w) = bz, w)el Jo nds/(Vereo)

to obtain the amplitude equations

dae lw/l/ w2 ( )/
E ZUJ T (T € 2
dz \/_200/8 ( 8)
dIBE Zw:U/ e iw2T(x) /€
- 2
dz \/E2C()a € ( 9)
with
T(x) = x/co + \/E/ u(s/e)ds/(2¢co) = z/co + x(x). (30)
0

The random variable x(z) corresponds to a small travel time correction. By computing its variance we easily find
that it is small O(e). Note that a¢ and 8¢ now corresponds to amplitudes in a random frame of reference. They
are “centered” with respect to the frame 7¢ that is slightly different from the one moving with effective medium
speed ¢g. The random travel time centering makes the system (28) purely “off-diagonal”. In the effective medium
approximation we ignore the stochastic coupling between the amplitudes, that is, the coupling due to the off-diagonal
terms in (28). As we show in the next section, this coupling causes a small modulation of the pulse which becomes
appreciable for long propagation distances, in our scaling a propagation distances of O(1).

D. Averaging of random coupling

We make use of the radiation condition

lim g¢(z,w) =0

Tr—r0o0



to obtain from (29) the integral expression

S

€ — * iw hd € iw2T¢(s)/e
@)= [ (2o ds

for the reflected amplitude. Moreover, from (28), we then obtain the integro-differential equation

W [ () e 2

€

for the transmitted wave amplitude. Note that in the effective medium the wave amplitude is constant. Thus, we
expect only a slow modulation of the amplitude in the random medium. The medium modulation g, however, vary
and decorrelate on the microscale e. We make therefore the approximation

E {/000 o (x,w) i (%) ,LL (ﬁ) elw2(r"(s) =T (x)) /e ds/e} (32)

€

€

< o) [ (BE) 2/ dsfe = oo (s,)

in the small € limit, where we defined

i) = [ s
1(0) = B((o)uls +v)).

The full justification of the validity of this step is complicated, see for instance [1]. Making the above approximation
in (31) we arrive at the following expression for the mean amplitude in the small € limit

da —w?
dr EW(Z‘U/CO)% (33)
0

where we used the notation

a(z,w) = lim E(af(x,w)).

e—0

E. Approximation for transmitted wave

We use the expression (33) to obtain an approximation for the transmitted wave in the small € limit, we find

a(z,w) = a(0,w)e @ 1(2e/co)z/1ey
= f(w)efw2;y(2w/co)w/4cg )

If we substitute this approximation for the transformed amplitude for the right propagating mode in the expression
for the flux function at depth L we obtain:

U(L,t) ~ % /a(L,w)ei‘”(Té(L)_t)/edw

_ % / Flw)ems™3@w/eo)L/ack gin(r (L)=0) /e g, (34)
t— (L
— 170+ 0] (T8

with

1 . 24 2
HL(S) — %/e—w)te—w 7(2w/co)L/4codw



and * being convolution. It is shown in for instance [1] that indeed

lim E(T(L, 7¢(L) + es) = [f(-) * H1](s). (35)

e—0

This is the O’Doherty-Anstey pulse-shaping approximation and we refer to H as the pulse-shaping function. Thus,
if we observe the transmitted pulse at a random arrival time we see a mean pulse shape that is obtained as the
pulse shape in the effective medium convolved with a pulse shaping function. This function is defined in terms of
the correlation function of the medium fluctuations. The source pulse is supported on the same scale as that of
the random fluctuations in the medium and the correlation function of these determines the evolution in the pulse
shape. We next motivate that not only the mean of the transmitted flux function, but the flux function itself is well
approximated by the expression (35).

F. Stabilization

A key aspect of the O’Doherty-Anstey theory is that in the above random time frame the flux function ¥ itself
is described asymptotically by a deterministic shape. Define the variance

E([¥(L,7¢(L) + es) — E(¥(L, (L) +es))]?)
~ ﬁ//e_i(“1+w2)s{E[a€(L,wl)aE(L,wz)] — a(L,w;)a(L, ws) }dw; dws as €]0.

We introduce the notation

Ce(Z',W) — zwp(m/e) efiw2‘r€(z)/e
200

and find

dE[o* (z,w1)a’(z, wa)]
dz

- / T LBIC (%, w0 )5 ) (5, wn o (x, 2)]
+ E[CE(X7 w2)Cf(s,w2)a€(x, wl)ae (S,(UQ)]} ds.

Therefore, if we again make an assumption about ‘locality’ as in (32) we find

E[ae(x7w1)a€(x7w2)] ~ h($7w17w2) as € ~L 07
with h solving for for > 0

dh 25(2 25 (2w:

p @enn) = IR )

The above argument indeed suggests that U(L,7¢(L) +es) ~ E(¥(L,7¢(L)+es)) in mean square in the limit of € small.
This is the remarkable stabilization aspect of the O’Doherty-Anstey theory. The random fluctuations of the pulse
when observed in the appropriately random time-frame is negligible for small £, thus, ¥ is described asymptotically
by a deterministic pulse shape that is a modification of the pulse in the effective medium case through convolution
with a pulse shaping function, here denoted H.

The random travel time correction corresponds to observing the transmitted wave relative to the first arrival time
defined by

L L T =
Ty :/ Lds :/ Md&
o c(z) 0 Co

That is, we can write:
U(L, Ty, +es) ~ [f(-) * H](s) as €10,

with # being the deterministic causal pulse shaping function defined relative to the first arrival time. In the case
that the medium fluctuations define a Markov random process the pulse shaping function H can be interpreted as the
distribution of a random sum, [19], and it can be computed explicitly. Assume the exponential correlation function:



E(u(0)u(s)) = Ce™*/

and introduce the non-dimensionalized variables: Z = z[C/(16r)], T = scp/(2r) := sA. Parameterized in terms of
these variables we find that the pulse shaping function is:

HEZT)=xe 2[6(T)+e 7 V/Z]T L(VEZT)],

with I; being the modified Bessel function of order one.

G. Low frequency limit

A simple characterization of H can be obtained in the low frequency limit. In this limit we can replace 4(2w/co) in
(34) by 4(0) =1, we therefore find

U(L,7¢(L) +es) = [f(-) * NL](s) as €10 (36)

where H is approximated by N7, a centered Gaussian pulse with variance Vi, = IL/(2c3). The travel time correction
relative to the effective medium travel time is random and is on the microscale given by x(L)/e, with x defined in (30).
The Central Limit Theorem shows that this quantity is approximately a Gaussian random variable with variance V7.

H. Transmitted wave in effective medium frame of reference

We show how the mean of the transmitted wave can be characterized when we observe it in the deterministic time
frame defined by the effective medium parameters. It follows from the above results that the transmitted wave for €
small and in the low frequency limit can be approximated as

U(L,7¢(L) +es) = [f(-) * NL](s) = (1/27) /e—iwsf(w)e,&w/z dw.
If we evaluate the transmitted wave in the effective frame of reference we find:
lP(.L, L/CO —+ Es) =~ (1/27T) /e—iwseiwxe(L)/ef(w)e_w2VL/2 dw

with x¢(L)/e defined by (30). For € small this quantity is approximately a Gaussian random variable with variance
VL. The mean of the pulse in this frame can be obtained by integrating with respect to the density for x¢(L)/e, then
we find

€_u2/2VL

V27V,
= (1/2m) /f(w) e~ VL2 giws o—?VLI2Z gy g,
= [f() x Nav, ](s)-

Hence, the spreding of the mean pulse in this time frame is defined as in (36) only with twice the variance for the
pulse shaping function.

e du dw

E[W(L,L/co + es)] = (1/27r)//f(w) e @ VL/2 gmiws

V. NUMERICAL ILLUSTRATION WITH SHALLOW WATER WAVES
A. Initial configuration for the numerical simulations

The numerical validation experiments are performed in a configuration as represented in figure 2. The initial wave
profile is given by a Gaussian elevation placed over the flat region (left side of figure 2). At the early stages of the
simulation a travelling pulse will propagate to the right with unit speed. After a small time interval the pulse starts
to interact with the disordered topography. The initial pulse width is effectively one. The topography is 100 units
long so that the simulation can capture the asymptotic regime described in the theory. The topography is described

10



by a slowly varying sinusoidal background, having a disordered layered microstructure as presented in figure 2. The
layered microstructure is given by piecewise constant ridges of random height. It is constructed so that the wave
speed corresponds to expression (13). In all experiments the background wave speed is

co(zi) = 1+ 0.3sin(kz;).

The (mean—zero) heights of the ridges fluctuate by 20% and the ridge-width is 0.1. The parameter k corresponds to
the scale of variation of the smooth background medium.

The three-dimensional equations (1-3) are discretized by an implicit, semi-Lagrangian technique [6]. A brief
description of the numerical method and benchmark experiments is given in the appendix. All experiments were
performed with a one-layer, one-dimensional grid as described below. The shallow water model reduces to the system
(4-6). The reason for adopting the current strategy is that the numerical scheme is very efficient and can be extended
to experiments in higher dimensions.

The discretization parameters used in the numerical simulations are: 10700 nodes in the x-direction spaced by
Az = 0.01 and 3 nodes in the y-direction, where 2 are along the solid/impermeable sides of the channel. The
topography is located from node 400 up to node 10400. The other nodes are over a flat region. In the vertical direction
we use 1 layer. The normalized propagation speed is equal to one and the nonlinearity parameter is o = 0.3 - 1073.
The initial Gaussian profile is centered at j=250. To record the transmitted wave at the fixed station (j=10400) we
use 43000 time steps of length At = 0.0025.

B. Numerical experiments

We carry out four numerical experiments which illustrate that the solution of the nonlinear equations (4-6) is
accurately described by the asymptotic approximation introduced in Section III in the regime of small parameters
considered.

Experiment 1: Deterministic diffusion in a random frame
In this first example we show that the transmitted water wave pulse, to leading order, is deterministic when observed
at its random arrival time. We use the model described in the previous section, but with a constant background, that
is k = 0. Figure 3 shows a detail of one realization of this medium. In Figure 4(A) we show transmitted pulse shapes
after propagation over the random ridges in the water bottom. The 25 lines correspond to propagation over different
realizations of the random piecewise—constant topography. The transmitted pulses are plotted (in time) at a fized
station along the free surface. The station is located 50 units into the random topography and the initial pulse width
is unity. At the station we record the water elevation at all times. In the plot we show the observed pulse starting
from a fixed time (¢t = 19900A¢). Note that the travel time to the station is random. The average travel time for the
pulses to the station is the effective medium travel time, see equation (18). In Figure 4(B) we show the same pulses,
but now we plot them centered at their random arrival time. When we center the pulses in this way it becomes clear
that the apparent diffusion, or broadening of the pulse, caused by the random medium fluctuations, is deterministic
and independent of the particular realization. The transmitted pulses are broader than the initial pulse of unit width
(i.e. covering 100 gridpoints), since the interaction with the rapid variation in the water depth causes them to diffuse
about their center. This broadening is what we refer to as anomalous diffusion and it can be described analytically
using the medium statistics as we illustrate next.

Experiment 2: Propagation over largescale bottom ondulations
In this second example we show the pulse shaping in the case where the bachground has a sinusoidal variation (the
mean water depth). We use the model introduced in the previous section with a sinusoidal background, using & = 1/20.

We first show the transmitted water pulse in the case without random fluctuations in the water depth, that is o = 0.
The topography is exactly as in Figure 5, but without the microstructure. The solid line in Figure 6 displays the free
surface elevation as the pulse is reaching the station point. A very mild oscillation is observed behind the pulse. This
is due to the slowly varying topography. The initial pulse profile is shown with the dashed line. Note that in the
absence of the random microstructure pulse broadening (or apparent diffusion) is not observed.

Next, we consider the case with microstructure and o = 0.2. Figure 5 shows a realization of the medium. In this
figure we also show the propagating water pulse in order to illustrate the scaling in the problem.

The apparent diffusive effect, due to the ridge-microstructure, is clearly seen in Figure 7 where we plot the transmit-
ted pulse with the solid line. The narrow dashed line is, as above, the initial pulse profile. The dashed line coinciding
with the solid line is the prediction of the pulse shaping according to the theory, as in (A5). The theoretical prediction
of the pulse shaping is very good.
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Experiment 3: Waters with rapid bottom ondulations
We next let the background landscape (i.e. the slowly varying component of the topography) vary on a faster scale.
This illustrates the robustness of the theory, which is based on separation of scales. We choose parameters as in
the previous example only that the period of the sinusoidal component of the topography is reduced. The period
corresponds to 6.5 times the initial pulse’s wave length, rather than 20 as above (that is £k = 1/6.5). We show
the transmitted pulse in Figure 8. The agreement between the numerical solution (solid line) and the theoretical
prediction of the pulse shaping (dashed line) is still very good.

Experiment 4: Larger fluctuations in the water depth
The final example further illustrates the robustness of the theory. We use the same parameters as in Example 2,
only that we now increase the strength of the random fluctuations in the water depth such that the amplitude of
the ridge-microstructure is approximately doubled (o = 0.4). As expected, the apparent diffusion effect is enhanced
as can be seen in Figure 9. Again the agreement with the theoretical prediction shown by the dashed line is very
good. Note that the transmitted pulse shape is close to the Gaussian shape. Since the travelling pulse in this example
becomes smooth and broad relative to the microstructure the Gaussian approximation in (20) well describes the pulse
shaping.

VI. CONCLUSIONS AND FUTURE WORK

We studied the effective behaviour of long coastal waves traveling over rough topographies containing a smooth
slowly varying profile together with disordered small-scale features. The main (stochastic theory) asymptotic result is
that the medium fluctuations cause the propagating pulse to broaden as it travels. This apparent diffusion depends only
on the traveling distance and the statistics of the random medium fluctuations. Thus, the broadening is described in a
deterministic way independently of the particular medium realization. Note that effective medium theory is valid for
short propagation distances on the scale of very few wavelengths. In the effective medium regime (i.e. homogenization
theory) there is no pulse shaping. In the regime of long propagation distances the microstructure affects the pulse
shape.

The robustness of the linear theory was validated numerically for a wide parameter regime through a nonlinear
shallow water solver (TRIM3D). We varied both the microscale fluctuation level as well as the horizontal length scales
of the topography and obtained very good agreement with the theory.

We are currently working on the diffusive upscaling of the microstructure of the topography. As mentioned in
our introduction, the “representation (...) of subgrid-scale orographic processes is recognized as crucial to numerical
weather prediction at all time ranges” (ECMWF [8]). We also intend to perform the full validation of the locally
layered O’Doherty-Anstey theory, a two-dimensional theory [19]. Furthermore we are working on the extension of the
O’Doherty-Anstey theory for weakly dispersive waves.
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APPENDIX A: THE DISCRETE PULSE SHAPING FUNCTION

As in Section ITI we discuss the solution of the wave system (10-11). Here we consider a discrete version of the
result (17) that gives the pulse shaping. First, we assume a constant background medium that is uniformly discretized
in space. The local speed of sound is:
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The medium fluctuations u, are identically, independently distributed random variables bounded above and below:
—1 < a < pn < b. The p;’s have zero mean and unit variance. Consider first the deterministic case and let the
discrete version of the transmitted pulse be:

U(x,, tn +iAL) = fi, (A3)

with z, = nAz, t, = nAt and At = Ax/cy. As above, we let the pulse be centered at the origin for ¢ = 0. Consider
next the random case and denote the travel time to location x, by 7,:

n

1
Ta=Y_ aAz. (A4)
=1

Then, the transmitted pulse can be approximated by
U(z,,, o +iAL) = fxH(i) (A5)

with x being discrete convolution. The discrete causal pulse shaping function is:

Hi=0 for i<0 (A6)

H; =p; else (A7)

with p; = e~%a’/i! being the discrete Poisson distribution with parameter a = no?/4. Note that the smearing of the
pulse happens on the scale of the discretization when n = O(c~2). Consider next the case with a variable background:

=c(n)? =c3(1) for <0 (A8)
=c(n)? =co(n)?(1+om) (n—1)Az < z < nAx. (A9)
The description (A5) prevails only in that the expression for the parameter a in the Poisson distribution becomes

g

a= Z(Co(’i)/co)z- (A10)

For a large the Poisson distribution becomes approximately the (discrete) Gaussian distribution with expectation
a and variance a. Thus, for n large the pulse shaping function 7 has approximately the shape of the Gaussian kernel.
It can be checked that the expression (19) gives (A10) for the above discrete medium model. Finally, if n = O(c=2)
then in distribution

Tn +a =ty + AN (A11)

with %, being the effective medium travel time to depth z, and A being a centered Gaussian random variable with
variance a as in (18).

APPENDIX B: NUMERICAL MODEL

The 3D equations are discretized by an implicit, semi—Lagrangian technique which accomplishes the objective that
the stability of the scheme does not depend on the celerity. Based on a linear stability analysis Casulli & Cheng
[6] derived a scheme which treats implicitly the pressure gradient term (Vn-term) and the velocity terms in the
free surface equation. This method is actually called a semi—implicit scheme because, in the full model, the vertical
diffusion term is discretized implicitly while the horizontal diffusion discretization is kept explicit.

The spatial grid consists of rectangular cells, centered at (x;,y;,2x), of length Az, Ay and height Azi"jk. This
height is interpreted as the thickness of the k-th layer of the 3D grid. Because of the presence of the topography and
free surface, this thickness can vary in space and time (indicated by the superscript n). The convection terms are
treated in a Lagrangian form, through the discretization of the material derivative (D/Dt)};,. A fixed staggered grid
is defined on the horizontal planes, at the interface between vertical layers. The numerical transport is performed
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in an Eulerian-Lagrangian manner, relying therefore on the interpolation of the respective grid point—values at the
backward—characteristic points of departure. Only one layer was used in the experiments presented below. Details
are given in Casulli & Cheng [6] and the references within.

To normalize the wave celerity we choose our parameters so that the reference shallow water speed is always equal
to one: (gho) = 1 or g = 1/hg. The implicit scheme constant is taken to be § = 0.5 (Crank—Nicolson). This value
minimizes the numerical dissipation and numerical diffusion is not observed. Several validation experiments were
performed in Nachbin [15] and Nachbin & Casulli [16] and the numerical solution exhibited very good conservation
properties. In the preliminary numerical experiments (Nachbin & Casulli [16]) it was observed that for the parameter
a = 0.1 the regime is strongly nonlinear and the waves very quickly break into bores.
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FIG. 1. Schematic figure with typical length scales.

FIG. 2. Detail of the left-end of the long propagation region. The vertical scale of the rightgoing pulse has been exagerated.
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FIG. 3. Detail of the random component of the topography.
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FIG. 4. The transmitted pulse shape, obtained by propagating a Gaussian pulse over different realizations
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topographies. (A) The solid lines correspond to 25 different realizations of the topography. Note that the travel time up to
this fixed station is random. It takes more than 20000A¢’s to reach this station. (B) All 25 wave profiles are centered at the
origin. The pulse shaping is seen to be deterministic.
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FIG. 5. Detail of the transmitted and reflected waves over the locally layered topography.
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FIG. 6. Gaussian pulse after propagating over a slowly varying sinusoidal topography (solid line). The dashed line is the
initial condition. Both were centered at the origin for comparison.
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FIG. 7. The solid line represents the numerical solution. The higher pulse (dashed line) represents the pulse’s initial profile.
The broader dashed line represents the pulse shaping theory. Waves centered at the origin for comparison.
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FIG. 8. The solid line represents the numerical solution. The higher pulse (dashed line) represents the pulse’s initial profile.
The broader pulse (dashed line) represents the pulse shaping theory. The period of the sinusoidal background variation in the
water depth is about 1/3 of its value in Figure 7.
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FIG. 9. The solid line represents the numerical solution. The higher pulse (dashed line) represents the pulse’s initial profile.
The broader pulse (dashed line) represents the theoretical prediction. The microstructure’s amplitude is twice as large as in
Figure 7.
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